Effect of single growth factor and growth factor combinations on differentiation of neural stem cells.
نویسندگان
چکیده
OBJECTIVE The effects on neural proliferation and differentiation of neural stem cells (NSC) of basic fibroblast growth factor-2 (bFGF), insulin growth factor-I (IGF-I), brain-derived neurotrophic factor (BDNF), and nerve growth factor (NGF) were assessed. Also, following combinations of various factors were investigated : bFGF+IGF-I, bFGF+BDNF, bFGF+NGF, IGF-I+BDNF, IGF-I+NGF, and BDNF+NGF. METHODS Isolated NSC of Fisher 344 rats were cultured with individual growth factors, combinations of factors, and no growth factor (control) for 14 days. A proportion of neurons was analyzed using beta-tubulin III and NeuN as neural markers. RESULTS Neural differentiations in the presence of individual growth factors for beta-tubulin III-positive cells were : BDNF, 35.3%; IGF-I, 30.9%; bFGF, 18.1%; and NGF, 15.1%, and for NeuN-positive cells was : BDNF, 34.3%; bFGF, 32.2%; IGF-1, 26.6%; and NGF, 24.9%. However, neural differentiations in the absence of growth factor was only 2.6% for beta-tubulin III and 3.1% for NeuN. For beta-tubulin III-positive cells, neural differentiations were evident for the growth factor combinations as follows : bFGF+IGF-I, 73.1%; bFGF+NGF, 65.4%; bFGF+BDNF, 58.7%; BDNF+IGF-I, 52.2%; NGF+IGF-I, 40.6%; and BDNF+NGF, 40.0%. For NeuN-positive cells : bFGF+IGF-I, 81.9%; bFGF+NGF, 63.5%; bFGF+BDNF, 62.8%; NGF+IGF-I, 62.3%; BDNF+NGF, 56.3%; and BDNF+IGF-I, 46.0%. Significant differences in neural differentiation were evident for single growth factor and combination of growth factors respectively (p<0.05). CONCLUSION Combinations of growth factors have an additive effect on neural differentiation. The most prominent neural differentiation results from growth factor combinations involving bFGF and IGF-I. These findings suggest that the combination of a mitogenic action of bFGF and postmitotic differentiation action of IGF-I synergistically affects neural proliferation and NSC differentiation.
منابع مشابه
The effect of Fibroblast Growth Factor-2(FGF-2) and retinoic acid on differentiation of mouse embryonic stem cells into neural cells
Introduction: Embryonic Stem (ES) cells as pluripotent cells derived from the inner cell mass of blastula can differentiate to neural cells in vitro and this property is valuable in studies of neurogenesis and in the generation of donor cells for transplantation. In this regard, the propose of this research, was the study of the role of two important factors in the development of neural syst...
متن کاملA New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells
Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...
متن کاملThe Effect of Astrocyte-Conditioned Medium (ACM) and Retinoic Acid on Neural Differentiation of Mouse Embryonic Stem Cells
Purpose: The aim of this research was to study the properties of factors secreted from astrocyte cells in suspension medium in direct differentiation of mouse embryonic stem cells into neural cells. Materials and Methods: Royan B1 mouse embryonic stem (ES) cells were used in this experiment. For differentiation of Es cells into the neural cells, the astrocyte-condition medium (ACM) of mouse fe...
متن کاملIsolation and Differentiation of Neural Stem/Progenitor Cells From Subventricular Zone of One Adult Rat
Introduction: In adult mammalian brain, neural stem cells are isolated from both the dentate gyrus and subventricular zone. This study aimed to isolate neural stem cells from adult rat subventricular zone and differentiate them into neurons and astrocytes. Methods: In this study, the whole brain was removed after full anesthesia and creating cervical dislocation. Under a microscope, subv...
متن کاملEffect of Neurotrophin-3 on Differentiation of Rat Hair Follicle Stem Cells into Neural Like Cells
Purpose: The aim of this study was to evaluate the effect of NT-3 on the decrease of the differentiation time of bulge stem cells of rat hair follicle from neuron like cells.Materials and Methods: The bulge region of the rat whisker was isolated from and cultured in DMEM/F12 supplemented with epidermal growth factor (EGF) in 3 groups for 7, 8 and 9 days .Then 10 ng/ml NT-3 was added to each gro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Korean Neurosurgical Society
دوره 44 6 شماره
صفحات -
تاریخ انتشار 2008